





До навчальних досягнень учнів з математики, які підлягають оцінюванню, належать:
Відповідно до ступеня оволодіння зазначеними знаннями і способами діяльності виокремлюються такі рівні навчальних досягнень школярів з математики:
Початковий рівень‑ учень(учениця) називає математичний об’єкт (вираз, формули, геометричну фігуру, символ), але тільки в тому випадку, коли цей об’єкт (його зображення, опис, характеристика) запропоновано йому (їй) безпосередньо; за допомогою вчителя виконує елементарні завдання.
Середній рівень‑ учень (учениця) повторює інформацію, операції, дії, засвоєні ним (нею) у процесі навчання, здатний (а) розв’язувати завдання за зразком.
Достатній рівень‑учень (учениця) самостійно застосовує знання в стандартних ситуаціях, вміє виконувати математичні операції, загальні методи і послідовність (алгоритм) яких йому (їй) знайомі, але зміст та умови виконання змінені.
Високий рівень‑ учень (учениця) здатний(а) самостійно орієнтуватися в нових для нього (неї) ситуаціях, складати план дій і виконувати його; пропонувати нові, невідомі йому (їй) раніше розв’язання, тобто його (її) діяльність має дослідницький характер.
Оцінювання якості математичної підготовки учнів з математики здійснюється в двох аспектах:
рівень оволодіння теоретичними знаннями та якість практичних умінь і навичок,
здатність застосовувати вивчений матеріал під час розв’язування задач і вправ.
Рівні навчальних досягнень | Бали | Критерії оцінювання навчальних досягнень |
I. Початковий | 1 | Учень (учениця) розпізнає один із кількох запропонованих математичних об’єктів (символів, виразів, геометричних фігур тощо), виділивши його серед інших; читає і записує числа, переписує даний математичний вираз, формулу; зображує найпростіші геометричні фігури (малює ескіз) |
2 | Учень (учениця) виконує однокрокові дії з числами, найпростішими математичними виразами; впізнає окремі математичні об’єкти і пояснює свій вибір | |
3 | Учень (учениця) співставляє дані або словесно описані математичні об’єкти за їх суттєвими властивостями; за допомогою вчителя виконує елементарні завдання | |
II. Середній | 4 | Учень (учениця) відтворює означення математичних понять і формулювання тверджень; називає елементи математичних об’єктів; формулює деякі властивості математичних об’єктів; виконує за зразком завдання обов’язкового рівня |
5 | Учень (учениця) ілюструє означення математичних понять, формулювань теорем і правил виконання математичних дій прикладами із пояснень вчителя або підручника; розв’язує завдання обов’язкового рівня за відомимиалгоритмами з частковим поясненням | |
6 | Учень (учениця) ілюструє означення математичних понять, формулювань теорем і правил виконання математичних дій власними прикладами; самостійно розв’язує завдання обов’язкового рівня з достатнім поясненням; записує математичний вираз, формулу за словесним формулюванням і навпаки | |
III. Достатній | 7 | Учень (учениця) застосовує означення математичних понять та їх властивостей для розв’язання завдань у знайомих ситуаціях; знає залежності між елементами математичних об’єктів; самостійно виправляє вказані йому (їй) помилки; розв’язує завдання, передбачені програмою, без достатніх пояснень |
8 | Учень (учениця) володіє визначеним програмою навчальним матеріалом; розв’язує завдання, передбачені програмою, з частковим поясненням; частково аргументує математичні міркування й розв’язування завдань | |
9 | Учень (учениця): вільно володіє визначеним програмою навчальним матеріалом; самостійно виконує завдання в знайомих ситуаціях з достатнім поясненням; виправляє допущені помилки; повністю аргументує обґрунтування математичних тверджень; розв’язує завдання з достатнім поясненням | |
IV. Високий | 10 | Знання, вміння й навички учня (учениці) повністю відповідають вимогам програми, зокрема: учень (учениця) усвідомлює нові для нього (неї) математичні факти, ідеї, вміє доводити передбачені програмою математичні твердження з достатнім обґрунтуванням; під керівництвом учителя знаходить джерела інформації та самостійно використовує їх; розв’язує завдання з повним поясненням і обґрунтуванням |
11 | Учень (учениця) вільно і правильно висловлює відповідні математичні міркування, переконливо аргументує їх; самостійно знаходить джерела інформації та працює з ними; використовує набуті знання і вміння в незнайомих для нього (неї) ситуаціях; знає, передбачені програмою, основні методи розв’язання завдання і вміє їх застосовувати з необхідним обґрунтуванням | |
12 | Учень (учениця) виявляє варіативність мислення і раціональність у виборі способу розв’язання математичної проблеми; вміє узагальнювати й систематизувати набуті знання; здатний(а) до розв’язування нестандартних задач і вправ |
Останні коментарі